STUDY OF THE NUTRIENT QUALITY OF VERMICOMPOST FROM DIFFERENT ORGANIC WASTE RAW MATERIALS

Nur Indah Mansyur, Kadri Muhammad, Deny Titing

Abstract


Most of the organic waste produced is still not managed properly so it can hurt environment. The easiest technology that can be in liquid or solid form and is used to deliver organic matter to improve the physical, chemical, and biological qualities of the soil, largely or entirely consist of organic materials derived from plants or animals that have undergone an engineering process. This study used vermicompost from vegetable waste, tofu dregs and cow manure as reference material to assess the nutritional content of vermicompost for composting. The composting process lasted for 28 days. Based on the test results or nutrient analysis or vermicompost, the chemical quality parameter of tofu waste compos had pH 5,89 Nitrogen 0,20%, Phosphorus 2,03% and Potassium 11,95%. On the chemical quality of compost C/N, the ratio of vegetable waste had the highest value of 27,02. Tofu vermicompost had the best value on the physical quality of the compost with a blackish color, temperature of 300C and water content of 13,89%. This composting was done by using earthworms Lumbricus rubellus and the raw materials used were vegetable waste, tofu dregs and cow manure

Full Text:

PDF

References


Yatoo AM, Niamat AMD, Baba ZA. 2021. Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea. A review. Agronomy for Sustainable Development 41(7), 1-26.

Elfayetti E, Rohani R. 2012. Pembuatan pupuk organik kascing dari berbagai jenis limbah sebagai alternatif meningkatkan life skill mahasiswa jurusan pendidikan Geografi Universitas Negeri Medan. Jurnal Geografi 4(1).

Inckel M, de Smet P, Tersmette T, Veldkamp T. 2005. The Preparation and Use of Compost. Agromisa Foundation, Wageningen.

Ramnarain YI, Ansari AA, Ori L. 2019. Vermicomposting of diferent organic materials using the epigeic earthworm Eisenia foetida. International Journal of Recycling of Organic Waste in Agriculture 8, 23–36.

Blouin M, Barrere J, Meyer N, Lartigue S, Barot S, Mathieu J. 2019. Vermicompost significantly affects plant growth. A meta-analysis. Agronomy for Sustainable Development 39(34).

Soobhany N, Mohee R, Garg VK. 2017. Acomparative analysis of composts and vermicomposts derived from municipal solid waste for the growth and yield of green bean (Phaseolus vulgaris). Environmental Science and Pollution Research 24, (11228–11239).

Atiyeh RM, Arancon NQ, Edwards CA, Metzger JD. 2000. Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresource Technology 75, (175–180).

Yatoo AM, Rasool S, Ali S, Majid S, Rehman MU, Ali MN, Eachkoti R, Rasool S, Rashid SM, Farooq S. 2020. Vermicomposting: an ecofriendly approach for recycling/management of organic wastes. In: Bioremediation and Biotechnology. Springer.

Huang K, Li F, Wei Y, Fu X, Chen X. 2014. Effects of earthworms on physicochemical properties and microbial profiles during vermicomposting of fresh fruit and vegetable wastes. Bioresource Technology 170, 45–52.

Sucipta NKSP, Kartini NL, Soniari NN. 2015. Pengaruh populasi cacing tanah dan jenis media terhadap kualitas pupuk organik. E-Jurnal Agroekoteknologi Tropik 4(3), 213-223.

Zhu F, Jingtao H, Xue S, Chuan W, Qiongli W, Hartley W. 2017. Vermicompost and gypsum amendments improve aggregate formation in bauxite residue. Land Degradation & Development 28, (2109-2120).

Lim SL, Wu TY, Lim PN, Shak KPY. 2015. The use of vermicompost in organic farming: overview, effects on soil and economics. Journal of the Science of Food and Agriculture 95(6), 1143-1156.

Kaplan M. 2016 The National Master Plan for Agricultural Development in Suriname. Final Report. Kaplan Planners Ltd, Jerusalem.

Serra-Wittling C, Houot S, Alabouvette C. 1996. Increased soil suppressiveness to Fusarium wilt of flax after addition of municipal solid waste compost. Soil Biology and Biochemistry 28, (1207–1214).

Termorshuizen AJ, van Rijn E, van der Gaag DJ, Alabouvette C, Chen Y, Lagerlof J, Malandrakis AA, Paplomatas EJ, Ramert B, Ryckeboer J. 2006. Suppressiveness of 18 composts against seven pathosystems: variability in pathogen response. Soil Biology and Biochemistry 38, 2461–2477.

Islam MS, Hasan M, Rahman MM, Uddin MN, Kabir MH. 2016. Comparison between vermicompost and conventional aerobic compost produced from municipal organic solid waste used in Amaranthus viridis production. Journal of Environmental Science and Natural Resources 9, 43-49.

Mengesha W, Powell S, Evans K, Barry K. 2017. Suppression of Potato Bacterial Wilt with Non-Aerated Compost Tea and Factors which Influence Efficacy. In Science Protecting Plant Health, Brisbane.

Roidah IS. 2013. Manfaat penggunaan pupuk organik untuk kesuburan tanah. Jurnal Bonorowo 1(1), 30-43.

Mashur. 2001. Vermikompos Pupuk Organik Berkualitas dan Ramah Lingkungan, Instalasi Penelitian dan Pengkajian Teknologi Pertanian BPPP RI.

Pane C, Spaccini R, Piccolo A, Scala F, Bonanomi G. 2011. Compost amendments enhance peat suppressiveness to Pythium ultimum, Rhizoctonia solani and Sclerotinia minor. Biological Control 56, 115–124.

Ismail SA. 2005. The Earthworm Book. Other India Press, Mapusa.

Dwiyantono R, Sutaryo S, Purnomoadi A. 2016. Perbandingan kualitas vermikompos yang dihasilkan dari feses sapi dan feses kerbau. Animal Agriculture Journal 3(2),147-154.

Afsyah S, Walida H, Dorliana K, Sepriani Y, Harahap FS. 2021. Analisis kualitas kascing dari campuran kotoran sapi, pelepah kelapa sawit dan limbah sayuran. AGROVITAL: Jurnal Ilmu Pertanian 6(1), 10-12.

Anggada RD, Hastuti SP. 2019. Pertumbuhan cacing tanah (Lumbricus rubellus) dan komposisi kompos pada media yang diperkaya limbah rumah makan dan limbah industri tahu. Buletin Anatomi dan Fisiologi (Bulletin of Anatomy and Physiology) 4(2), 182-191.

Aryonugroho A, Lestari ND. 2021. Pengaruh vermikompos abu terbang batubara menggunakan cacing tanah Eisenia fetida terhadap kandungan N, P, K, dan Pb. Jurnal Tanah dan Sumberdaya Lahan, 8(2), 359-368.

Sinha, Rajiv, Herat, Sunil, Valani, Dalsukhbhai, Chauhan, Krunalkumar. 2009. Earthworms vermicompost: A powerful crop nutrient over the conventional compost & protective soil conditioner against the destructive chemical fertilizers for food safety and security. Journal American-Eurasian Journal of Agricultural & Environmental Sciences.

Arancon NQ, Edwards CI, Bierman P. 2006. Influences of vermicomposts on field strawberries-2: Effects on soil microbiological and chemical properties. Bioresource Technology 97, 831-840.

Mukromah R. 2018. Kandungan Nitrogen (N), Fosfor (P) dan Karbon (C) Kascing dari Media Cacing Tanah (Lumbricus rubellus) yang Difermentasi dengan Kultur Mikroba Azotobacter Level Berbeda pada Feses Babi dan Arang Sekam sebagai Pupuk. Disertasi. Universitas Brawijaya, Indonesia.

Dominguez J, Edwards CA, Subler S. 1997. A comparison of vermicomposting and composting. BioCycle 38, 57–59

Domínguez J, Aira M, Kolbe AR, Gómez-Brandón M, Pérez-Losada M. 2019. Changes in the composition and function of bacterial communities during vermicomposting may explain beneficial properties of vermicompost. Scientific Reports 4.

Kaushik P, Garg VK. 2003. Vermicomposting of mixed textile mill sludge and cow dung with epigeic earthworm Eisenia foetida. Bioresource Technology 90(3), 311-316.

Solis-Mejia L, Islas-Espinoza M, Estellar MV. 2012. Vermicomposting of sewage sludge: Earthworm population and agronomic advantages. Compost Science & Utilization 20(1), 11-17.

Naidu Y, Meon S, Kadir J, Siddiqui Y. 2010. Microbial starter for the enhancement of biological activity of compost tea. International Journal of Agriculture & Biology 12, 51-56.




DOI: https://doi.org/10.35334/iciksa.v0i0.185

Refbacks

  • There are currently no refbacks.


Organised by:

Jurnal J-Pen Borneo:Jurnal Ilmu Pertanian

Faculty of Agriculture, University Of Borneo Tarakan

Tarakan city, North Borneo Province, Indonesia